maximum and minimum peaks in the final difference Fourier map are near Ta sites. All calculations were performed on a MicroVAXII computer using TEXSAN software (Molecular Structure Corporation, 1985).

The authors acknowledge the support of the National Natural Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OH1092). Services for accessing these data are described at the back of the journal.

References

Badding, M. E. \& DiSalvo, F. J. (1990). Inorg. Chem. 29, 3952-3954.
Bronsema, K. D.. van Smaalen, S., de Boer, J. L., Wiegers, G. A.. Jellinek. F. \& Mahy, J. (1987). Acta Crest. B43. 305-313.
Cheetham. A. K. \& Day, P. (1992). Solid State Chemistṛ: Compounds. Oxford: Clarendon Press.
Cotton, F. A.. Feng. X.-J.. Kibala, P. A. \& Sandor, R. B. W. (1989). J. Am. Chem. Soc. 111, 2148-2151

Gilmorc, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Siructures from X-ray Data. Department of Chemistry. University of Glasgow, Scotland.
Liu. S.-X., Huang, D.-P.. Huang, C.-C.. Xu, H.-D. \& Huang, J.-L. (1996). J. Solid State Chem. 123, 273-276.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC. 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed. New York: Cornell.
Pcterse. W. J. A. M. \& Palm. J. H. (1966). Acta Crnst. 20, 147-150.
Tremel, W. (1992). J. Chem. Soc. Chem. Commun. pp. 709-710.
Walker, N. \& Stuart. D. (1983). Acta Cryst. A39. 158-166.

Acta Cryst. (1998). C54, 895-897

A New One-Dimensional Compound: $\left(\mathrm{TaTe}_{4}\right)_{6} \mathbf{I}_{4}\left(\mathrm{TaI}_{6}\right)$

Jin-Ling Huang, Da-Ping Huang, Shi-Xiong Liu, Chang-Cang Huang and Hual-Da Xu

Department of Chemistry and State Key Laboratory of Structural Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China. E-mail: sxliu@fzu. edu.cn
(Received 15 Al'gust 1995: accepted 2 December 1997)

Abstract

The title compound, hexakis(tetratelluriotantalum) tetraiodide hexaiodotantalate, has a [$\left.\mathrm{TaTe}_{4}\right]_{n}$ chain structure with TaI_{6}^{-}complex anions and I^{-}anions between the chains. The $\left[\mathrm{TaTe}_{4}\right]_{n}$ chain contains rectangular antiprismatic TaTe_{8} polyhedra, each Ta atom being

coordinated by four Te_{2} groups. The Ta atom in the $\mathrm{TaI}_{6}{ }^{-}$complex anion is octahedrally coordinated by I^{--} anions.

Comment

Transition metal chalcogenides with chain structures have attracted growing interest in recent years (Whittingham \& Jackson, 1982) owing to their physical properties, such as superconductivity, magnetic ordering at low temperatures, charge-density wave properties and anisotropic behaviour (Li et al., 1990; Minton \& Brill, 1987). Recently, the study of compounds with $M Q_{4}$ chains ($M=\mathrm{Ta}, \mathrm{Nb} ; Q=$ chalcogen) has increased markedly. The compounds ($M \mathrm{Te}_{4}$)I (Huang, 1994) and $\left(\mathrm{MSe}_{4}\right)_{y} X(y=2,3,3.33,4 ; X=\mathrm{Br}$, I) (King, 1994) have been synthesized and structurally characterized. A compound with TaI_{6} complex anions, $\left(\mathrm{TaTe}_{4}\right)_{4} \mathrm{I}_{2}\left(\mathrm{TaI}_{6}\right)$, has been obtained (Liu et al., 1996). In this paper, we report the structure of a new compound, $\left(\mathrm{TaTe}_{4}\right)_{6} \mathrm{I}_{4}\left(\mathrm{TaI}_{6}\right)$.

The structure of the title compound can be considered as consisting of $\left[\mathrm{TaTe}_{4}\right]_{n}$ chains, TaI_{6}^{-}complex anions and I^{-}anions. The TaI_{6}^{-}complex anions and I^{-}anions are relatively isolated.

The configuration of the $\left[\mathrm{TaTe}_{4}\right]_{n}$ chain is shown in Fig. 1, in which each Ta atom is coordinated by four Te_{2} groups in the form of a rectangular antiprism. The dichalcogen group acts as a ligand and bridges two neighbouring metal atoms along the chain, as found in the binary compound VS_{4} (Allmann et al., 1964). The $\mathrm{Ta}-\mathrm{Te}$ bond lengths are in the range 2.831 (1)-2.866(1) \AA, while the $\left(\mathrm{TaTe}_{4}\right)_{4} \mathrm{I}_{2}\left(\mathrm{TaI}_{6}\right)$ compound exhibits longer $\mathrm{Ta}-\mathrm{Te}$ bond lengths, from 2.81 to $2.96 \AA$. The $\mathrm{Te}-\mathrm{Te}$ bond lengths of the Te_{2} groups are in the range $2.752(1)-2.812(1) \AA$, which

Fig. 1. The structure of a $\left[\mathrm{TaTe}_{4}\right]_{n}$ chain.
is very close to the range $2.760-2.803 \AA$ found for $\left(\mathrm{TaTe}_{4}\right)_{4} \mathrm{I}_{2}\left(\mathrm{TaI}_{6}\right)$. All the $\mathrm{Ta}-\mathrm{Te}$ - Ta bond angles of the $\left[\mathrm{TaTe}_{4}\right]_{n}$ chain in $\left(\mathrm{TaTe}_{4}\right)_{6} \mathrm{I}_{4}\left(\mathrm{TaI}_{6}\right)$ and $\left(\mathrm{TaTe}_{4}\right)_{4} \mathrm{I}_{2}\left(\mathrm{TaI}_{6}\right)$ are about 73°. The $\mathrm{Ta}-\mathrm{Ta}$ distances are about $3.40 \AA$ in the title compound.
In the TaI_{6}^{-}complex anion, the Ta atom is octahedrally coordinated by six I atoms, but there are three symmetrically independent Ta-I bonds with bond lengths of 2.704 (1), 2.757 (1) and 2.759 (1) \AA.
The $\left[\mathrm{TaTe}_{4}\right]_{n}$ chains are held together by I^{-}anions and Tal_{5}^{-}complex anions, as illustrated in Fig. 2. Their stacking order is $-\mathrm{TaI}_{6}-\left[\mathrm{TaTe}_{4}\right]_{n}-\mathrm{I}-\left[\mathrm{TaTe}_{4}\right]_{n}-\mathrm{I}-$ $\left[\mathrm{TaTe}_{4}\right]_{n}$ - along the b axis. The shortest contacts between isolated I^{-}anions and Te atoms in adjacent [$\left.\mathrm{TaTe}_{4}\right]_{n}$ chains are about $3.2 \AA$, but the shortest contact between an I atom of a $\mathrm{TaI}_{6}{ }^{-}$complex anion and a Te atom of a $\left[\mathrm{TaTe}_{4}\right]_{n}$ chain is larger than $3.4 \AA$.

Fig. 2. A view of $\left(\mathrm{TaTe}_{4}\right)_{6} \mathrm{I}_{4}\left(\mathrm{TaI}_{6}\right)$ along the c axis. showing the stacking of the $\left[\mathrm{TaTe}_{4}\right]_{n}$ chains, TaI_{6}^{-}complex anions and I^{-}anions. Filled circles represent Ta atoms. shaded circles represent Te atoms and large open circles represent 1 atoms.

Experimental

The title compound was obtained by a solid-state reaction at high temperature from a Ta:Te:I mixture in the molar ratio 1:1:1; the I and Te elements act as reactants and melting reagents. Some needle-shaped crystals were formed on the wall of the tube when the mixture was heated at 1173 K for one day and then naturally cooled to 823 K .

Crustal data
$\left(\mathrm{TaTe}_{+}\right)_{\mathrm{C}} \mathrm{I}_{4}\left(\mathrm{TaI}_{6}\right)$
$M_{I}=5598.08$
Triclinic
$P \overline{1}$
$a=7.712(2) \AA$
$b=26.454(8) \AA$
$c=6.777$ (2) \AA
$\alpha=91.06(2)^{\circ}$
$3=102.02(2)^{\circ}$
? $=94.69(2)^{\circ}$
$V=1346.8(6) \AA^{3}$
$Z=1$
$D_{\mathrm{i}}=6.90 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5R diffractometer
ω scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.292 . T_{\text {mal }}=0.522$
10867 measured reflections
10215 independent reflections

Refinement

Refinement on F
$R=0.032$
$w R=0.055$
$S=1.44$
5959 reflections
188 parameters $w=1 / \sigma^{2}(F)$

Mo $K o$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25
reflections
$\theta=12-20^{\circ}$
$\mu=32.468 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle
$0.50 \times 0.03 \times 0.02 \mathrm{~mm}$
Black

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.03 \\
& \Delta \rho_{\max }=2.72 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-3.43 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Scattering factors from International Tables for X-ray. Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$B_{\text {e } 4}=(t / 3) \sum_{l} \sum_{l} 3^{\prime \prime} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$!$	こ	$B_{\text {cy }}$
Ta(1)	0	0	0	1.53(2)
Tat?	0.56694 (7)	$0.78515(2)$	0.39077 (8)	$1.36(2)$
Tat 3)	0.56294 (7)	$0.78528(2)$	$-0.10886(6)$	1.35(2)
Ta(4)	$0.00266(6)$	$0.49963(2)$	0.74959 (7)	$1.11(1)$
I(1)	-0.0)2-4 (1)	0.08 .577 (.3)	0.2370 (1)	1.94 (3)
(12)	0.2799 (1)	$0.04268(4)$	-0.1537(2)	2.31 (3)
I(3)	0.2342(1)	--0.03693141	0.3057(2)	2.50 (3)
(14)	0.4+13(1)	$0.62246(3)$	0.102111	1.97 (3)
I(1.5)	$0.1320(1)$	$0.66+2.3(3)$	$0.5393(1)$	1.94 (3)
Te (1)	0.7802 (1)	0.72966 (3)	$0.1857(1)$	1.60 (3)
Te(2)	0.8316 (1)	$0.83+52(3)$	$0.2049(1)$	1.59 (3)
Te(3)	$0.3070(1)$	0.73317 (3)	$0.0780(1)$	1.48 (3)
$\mathrm{Te}(4)$	0.3461 (1)	0.83986 (3)	0.0947 (1)	1.49 (3)
Te(5)	0.561 .3 (1)	$0.87225(3)$	$0.6466(1)$	1.59 (3)
Te(f)	0.27 .31 (1)	$0.80083(3)$	0.5713111	1.53 (3)
Te(7)	$0.8556(1)$	$0.76847(3)$	$0.711511)$	1.52(3)
$\mathrm{Te}(8)$	$0.5579(1)$	0.69860 (3)	$0.6 .332(1)$	1.57 (3)
Te(9)	-0.2909 (1)	0.51596 (3)	0.9293111	1.48 (3)
Te(10)	$0.0028(1)$	$0.5868+(3)$	$1.0055(1)$	1.52 (3)
Te(1)	$0.2602(1)$	$0.551+9$ (3)	0.56.30(1)	$1.48(3)$
Te(12)	$0.218411)$	(0.4448+(3)	0.5443111	1.47 (3)

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

Ta(1)-I(3)	2.704 (1)	$\mathrm{Ta}(3)-\mathrm{Te}$ (8)	2.850 (1)
$\mathrm{Ta}(1)-\mathrm{l}\left(2^{1}\right)$	2.757 (1)	$\mathrm{Ta}(4)-\mathrm{Te}\left(9^{\text {¹ }}\right.$)	2.831 (1)
$\mathrm{Ta}(1)-\mathrm{l}(1)$	2.759 (1)	$\mathrm{Ta}(4)-\mathrm{Te}\left(1^{\prime \prime \prime}\right)$	2.843 (1)
$\mathrm{Ta}(2)-\mathrm{Te}(6)$	2.845 (1)	$\mathrm{Ta}(4)-\mathrm{Te}\left(10{ }^{\prime \prime}\right)$	2.853 (1)
$\mathrm{Ta}(2)-\mathrm{Te}(8)$	2.847 (1)	$\mathrm{Ta}(4)-\mathrm{Te}(10)$	2.860 (1)
$\mathrm{Ta}(2)-\mathrm{Te}(2)$	2.855 (1)	1(5)-Te(11)	3.215 (2)
$\mathrm{Ta}(3)-\mathrm{Te}(4)$	2.840 (1)	$\mathrm{Te}(9)-\mathrm{Te}(10)$	2.774 (1)
$\mathrm{Ta}(3)-\mathrm{Te}(1)$	2.842 (1)	Te (11)-Te(12)	2.811 (2)
Ta(2)-Ta(3')	3.397 (1)	I(5)-Te(8)	3.262 (2)
(1)-Tc($\left.5^{\text {¹I }}\right)$	3.415 (2)	$\mathrm{Te}(6)-\mathrm{Tc}\left(7^{\text {+111 }}\right)$	3.586 (1)
I(2)-Tc($2^{\prime \prime}$)	3.433 (2)	$\mathrm{Te}(9)-\mathrm{Te}\left(9^{1 \times}\right)$	3.593 (2)
$\mathrm{I}\left(3^{1}\right)-\mathrm{Ta}(1)-\mathrm{I}(1)$	90.66 (4)	$\mathrm{Tc}(6)-\mathrm{Ta}(2)-\mathrm{Te}(8)$	78.41 (4)
$1\left(3^{1}\right)-\mathrm{Ta}(1)-\mathrm{I}\left(1^{1}\right)$	89.34 (4)	$\mathrm{Te}(6)-\mathrm{Ta}(2)-\mathrm{Te}(4)$	77.15 (4)
$\mathrm{I}(2)-\mathrm{Ta}(1)-\mathrm{I}\left(2^{1}\right)$	180	$\mathrm{Tc}(6)-\mathrm{Ta}(2)-\mathrm{Te}(2)$	144.17 (4)
$\mathrm{Te}(3)-\mathrm{Ta}(3)-\mathrm{Te}\left(8^{\prime}\right)$	90).36(3)	$\mathrm{Tc}\left(11^{\prime \prime \prime}\right)-\mathrm{Ta}(4)-\mathrm{Te}(12)$	79.07 (4)
$\mathrm{Te}(3)-\mathrm{Ta}(3)-\mathrm{Te}(2)$	107.22 (4)	$\mathrm{Te}\left(11^{\prime \prime}\right)-\mathrm{Ta}(4)-\mathrm{Te}(11)$	107.20 (3)
$\mathrm{Te}\left(7^{\text {d }}\right)-\mathrm{Ta}(3)-\mathrm{Te}(1)$	77.05 (3)	$\mathrm{Te}\left(11^{\prime \prime}{ }^{\prime \prime}\right)-\mathrm{Ta}(4)-\mathrm{Te}(10)$	133.01 (4)
$\mathrm{Te} \mathrm{T}^{\text { }}$)-Ta(3)-Te(5)	80.39 (4)	$\mathrm{Te}(9)-\mathrm{Ta}(4)-\mathrm{Te}\left(1{ }^{211}\right)$	76.62 (3)
$\mathrm{Te}(1)-\mathrm{Ta}(3)-\mathrm{Te}\left(8^{\prime}\right)$	84.38 (4)	$\mathrm{Te}(12)-\mathrm{Ta}(4)-\mathrm{Te}\left(10^{\prime \prime}\right)$	85.47 (4)
$\mathrm{Te}(1)-\mathrm{Ta}(3)-\mathrm{Te}(2)$	$58 . \mathrm{S} 5$ (3)	Te(12)-Ta(4)-Te(10)	143.79 (3)
$\mathrm{Te}\left(9^{\prime \prime}\right)-\mathrm{Ta}(4)-\mathrm{Te}(12)$	79.08 (4)	$\mathrm{Te}(2)-\mathrm{Te}(1)-\mathrm{Ta}(2)$	61.22 (3)
$\mathrm{Ta}(3)-\mathrm{Te}(3)-\mathrm{Ta}(2)$	73.03 (3)	Te(12)-Te(11)-1(5)	156.13 (4)
Te(8)-Te(7)-Ta(3')	60.93 (5)	$\mathrm{Ta}(2)-\mathrm{Te}(7)-\mathrm{Ta}\left(3^{\prime \prime}\right)$	73.52 (3)

Acta Cryst. (1998). C54, 897-898

Carbon Dioxide at 1.0 GPa

Robert T. Downs \dagger and M. S. Somayazulu
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd NW, Washington, DC 20015, USA.
E-mail: downs@geo.arizona.edu

(Received 22 May 1997; accepted I9 January 1998)

Abstract

An X-ray diffraction study of single-crystal CO_{2} has been undertaken at $1.00(5) \mathrm{GPa}$ pressure. The crystal exhibits $P a \overline{3}$ symmetry with a cell edge of 5.4942 (2) \AA and a C-O bond length of 1.168 (1) \AA (corrected for thermal motion effects). The study demonstrates that an earlier claim of a new dry ice II phase at this pressure is unfounded.

Comment

Carbon dioxide is one of the most important gaseous compounds relevant to geological processes, both for the earth and other planetary bodies. As such, an understanding of its high-pressure phases and properties is of interest. For instance, an interpretation of nearsurface emission spectra obtained from Jupiter requires a knowledge of the phases that could possibly exist there. The CO_{2} gas phase, stable at room conditions, transforms directly to solid dry ice at 194.5 K and room pressure. The structure of a single crystal of dry ice has most recently been determined by Simon \& Peters (1980) at 150 K , crystallizing in space group $P a \overline{3}$ with the C atoms occupying special position $4 a$ and the O atoms occupying $8 c$.
With application of pressure while maintaining room temperature, however, the gas transforms to a liquid at around 7.5 MPa , and then to a solid at around 0.5 GPa (Bridgman, 1914). Liu (1983) claimed that this solid represents a new phase, which he called dry ice II, stable to 2.3 GPa , above which the solid transforms to dry ice. The evidence for the existence of the dry ice II phase was a 'poor quality' powder pattern. With further application of pressure above 10 GPa , dry ice appears to transform to a Cmca structure (Aoki et al., 1994), again based on powder work. We report here the first singlecrystal X-ray diffraction study of the structure of CO_{2} at pressure, undertaken to determine the phase observed by Liu (1983). The results demonstrate that Liu's claim of the new dry ice II phase is unfounded.

The single-crystal X-ray analysis demonstrates that CO_{2} exhibits cubic $P a \overline{3}$ symmetry immediately upon

[^0]
[^0]: \dagger Current address: Department of Geosciences. University of Arizona, Tucson, AZ 85721-0077, USA.

